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We explore stochastic resonance effects in the response of a complex stochastic system formed by a finite
number of interacting, identical subunits driven by a time-periodic force. The driving force alone cannot induce
sustained oscillations between the different attractors of the dynamics in the absence of noise. We focus on a
global stochastic variable defined as the arithmetic mean of the relevant stochastic variable of each subunit. We
construct numerical approximations to its first two long time cumulant moments and its long time correlation
function. We also compute the output signal-to-noise ratio and the stochastic resonance gain, for a wide range
of parameter values and several types of driving forces. The coupling between the subsystems leads, within
adequate ranges of the parameter values, to global outputs with very large signal-to-noise ratios. We have also
observed gains larger than unity in the global response to subthreshold sinusoidal driving forces.
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I. INTRODUCTION

Stochastic resonance �SR� is one of several interesting
phenomena that have been studied in relation to the response
of stochastic nonlinear systems driven by externally con-
trolled, deterministic, time-periodic forces. Several quantities
have been introduced to characterize SR, and different theo-
retical approaches have been put forward to describe them.
The theoretical expressions have been tested against exten-
sive numerical calculations as well as experiments and analo-
gous simulations �1�. Numerics has also provided useful in-
sights into the characteristics of the phenomenon in regions
of parameter values beyond the validity of analytical ap-
proximations �2�.

A large proportion of the published work has concentrated
on the phenomenon of SR in simple systems �1�. Nonethe-
less, SR has also been studied in complex systems �3,4�. In
�5�, a set of globally coupled, noisy bistable systems driven
by an external periodic force is described in terms of a non-
linear master equation. Bulsara and collaborators have con-
sidered arrays of globally �6� or locally �7� coupled nonlinear
oscillators. They find that the stochastic resonant response of
one of the oscillators is enhanced as a consequence of its
coupling to other identical oscillators. Neiman et al. �8� use
linear response theory to analyze the system size dependence
of the system response, for sets of independent subsystems
driven by periodic or aperiodic forces. For a particular kind
of coupling �mean-field coupling� �9�, we have observed a
large enhancement in stochastic resonant effects in arrays of
noisy, driven bistable systems in the limit of infinitely large
systems �10�. SR in ion channel assemblies have been stud-
ied by Schmid et al. �11�. More recently, globally coupled
networks of noisy neural elements have been studied �12�.

In this work, we consider a complex system formed by a
finite number of N identical, coupled subunits. Each subunit
is characterized by a stochastic variable, say xi�t�, and it is
subject to a time-periodic driving term. The consideration of

finite sets is inspired by the fact that certain processes in
neuroscience seem to involve a rather small number of sub-
systems �13�. The whole system will be characterized by a
single stochastic collective variable S�t�= �1/N��i=1

N xi�t�. The
response of the system to the external driving depends on the
peculiarities of the external driving, on the parameter values
of the noise terms, on the number of subunits, and on the
strength of the coupling terms. We will focus our analysis on
the long time limit of the first two cumulant moments of S�t�
and on an appropriately defined one-time correlation func-
tion. We will see that the first moment will be periodic in
time, with the same period as the driving force, and its shape
will, in general, be distorted with respect to the shape of the
driver. Its amplitude presents a nonmonotonic dependence on
the noise strength, typical of a SR phenomenon. In general,
the amplitude of the first moment of the collective variable is
enhanced with respect to the amplitude of the first moment
of xi�t� in the absence of coupling. The degree of enhance-
ment depends on the system size and the coupling strength.
On the other hand, the second cumulant of S�t� is much
smaller than the second cumulant of xi�t�. For uncoupled
sets, this follows from the central limit theorem �14�. We will
see that it is still true in the presence of coupling. This strong
reduction of the fluctuations of S�t� in sets of identical,
coupled subunits manifests itself on the signal-to-noise ratio
of the global output. In general, the output signal S�t� will be
much less noisy than the output of an individual, uncoupled
subunit. Some years ago, Loerincz, Gingl, and Kiss �15�
demonstrated that stochastic resonance gains larger than
unity for a single threshold detector subject to strong spiking
signals are possible. In this work, we have also obtained
values of the stochastic resonance gain larger than unity, for
coupled sets driven by subthreshold sinusoidal forces. Even
though there are no theoretical reasons why the gain cannot
be larger than unity in nonlinear stochastic resonance, we
think that, to the best of our knowledge, gains larger than
unity have not been previously reported for subthreshold,
sinusoidal driving forces.

The rest of the paper is as follows. In the next section, we
specify the model system and define the quantities to be*Electronic address: morillo@us.es
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evaluated: the first two cumulant moments of the collective
stochastic variable, S�t� and its one-time correlation function.
For uncoupled sets we obtain formal expressions relating
those quantities to that of a single unit. When coupling is
present, the single unit variables are correlated and the for-
mal expressions need to be modified. Unfortunately, there are
no reliable analytical procedures to analyze the formal ex-
pressions. Thus, we will rely on numerical procedures to
obtain information about the system behavior. The results are
presented in Sec. III. Finally, in the last section, we summa-
rize our findings.

II. THE MODEL AND SOME DEFINITIONS

We consider a set of N identical subsystems, each of them
characterized by a variable xi�t� �i=1, . . . ,N� satisfying a sto-
chastic evolution equation �in dimensionless form� of the
type

xi
˙ = −

�U�x1, . . . ,xN�
�xi

+ F�t� + �i�t� . �1�

The external driving force is periodic in t, F�t�=F�t+T�. The
term �i�t� represents a white noise with zero average and
��i�t�� j�s��=2D�ij��t−s�. When U is separable,
U�x1 , . . . ,xN�=�Ui�xi�, the subunits are statistically indepen-
dent.

The system as a whole will be characterized by a collec-
tive variable S�t� defined by

S�t� =
1

N
�

j

xj�t� . �2�

We are interested in the long time response of the collective
variable to the driving force, when the system size N is kept
finite. In particular, we will concentrate on the analysis of its
first two cumulant moments �S�t��*, �S2�t��*− �S�t��*

2, and its
one-time correlation function, defined as

L��� =
1

T
�

0

T

dt�S�t�S�t + ���*, �3�

where the notation �¯� indicates an average over the noise
realizations and the subscript * indicates the long time limit
of the noise average, i.e., its value after waiting for t large
enough that transients have died out.

Let us first consider the case of independent subsystems. It
is straightforward to see that

�S�t�� =
1

N
�

j

�xj�t�� = �x1�t�� , �4�

as all the individual averages are identical. Also,

�S2�t�� =
1

N2�
i,j

�xi�t�xj�t�� =
1

N
�x1

2�t�� + 	N − 1

N

�x1�t�x2�t�� .

�5�

As the subsystems are identical and independent, we have
�x1�t�x2�t��= �x1�t���x2�t��= �x1�t��2. Thus,

�S2�t�� − �S�t��2 =
1

N
��x1

2�t�� − �x1�t��2� . �6�

The second cumulant of the collective variable is 1 /N times
that of the individual subsystems, in agreement with the cen-
tral limit theorem.

The two-time correlation function is

�S�t�S�t + ��� =
1

N2�
i,j

�xi�t�xj�t + ���

=
1

N
�x1�t�x1�t + ���

+ 	1 −
1

N

�x1�t���x1�t + ��� , �7�

where we have used that the subunits are identical and sta-
tistically independent. In the long t limit, the two-time cor-
relation function is periodic in t with the period of the driv-
ing force. Then, averaging the long time limit of Eq. �7� over
a period, one finds the one-time correlation function

L��� =
1

T
�

0

T

dt�S�t�S�t + ���* =
1

N
C��� + Ccoh���	1 −

1

N



= Ccoh��� +
1

N
Cincoh��� . �8�

Here we have used the individual subsystem correlation
function

C��� =
1

T
�

0

T

dt�x1�t�x1�t + ���*.

It contains two terms: its coherent part Ccoh���
= �1/T��0

Tdt�x1�t��*�x1�t+���*, and its incoherent part
Cincoh���=C���−Ccoh���. The coherent part is periodic in �
with the period of the driver, while the incoherent part de-
cays to zero as � goes to �. Consequently, L��� is

L��� = Lcoh��� + Lincoh��� , �9�

with

Lcoh��� = Ccoh���, Lincoh��� =
1

N
Cincoh��� . �10�

The coherent part of the collective variable correlation func-
tion, Lcoh���, is identical to the coherent part of one of the
individual subsystems, Ccoh���, while the corresponding in-
coherent part is reduced by a factor 1 /N with respect to
Cincoh���.

The output signal-to-noise ratio Rout is

Rout = lim
�→0+

�
�−�

�+�

d�L̃���

L̃incoh���
=

L̃coh���

L̃incoh���
, �11�

where � is the fundamental frequency of the driving force

F�t�, L̃coh��� is the corresponding Fourier coefficient in the

Fourier series expansion of Lcoh���, and L̃incoh��� is the Fou-
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rier transform at frequency � of Lincoh���. Taking into ac-
count Eq. �10�, it follows immediately that Rout is enhanced
with respect to that of an individual subunit; namely,

Rout = NRout�indiv. �12�

Similarly, the collective input signal-to-noise ratio Rin�coll is
defined by replacing the numerator and denominator in Eq.
�11� with the corresponding quantities for the collective input
F�t�+ �1/N��i�i�t�.

It is interesting to compare Rout with Rin�coll. Then, we
compute the stochastic resonance gain as

G =
Rout

Rin�coll
. �13�

In linear systems, the value of the output signal-to-noise ratio
is identical to that of the input, and the gain is just 1. For
nonlinear systems this is no longer the case. Taking into ac-
count that

Rin�coll = NRin�indiv, �14�

we see that the gain associated with the collective variable
will be the same as the one associated to a single unit;
namely,

G�coll = G�indiv. �15�

Let us now consider a set of N interacting identical sub-
systems. The introduction of interaction terms influences the
behavior of each subunit, and, therefore, that of the global
variable S�t ;	�. To indicate that we are dealing with a
coupled set, we will use the notation �t ;	�, where 	 is a
parameter gauging the strength of the coupling term. Even in
the presence of coupling, as the subunits are still identical,
we can still write

�S�t;	�� = �x1�t;	�� . �16�

For the second cumulant we obtain

�S2�t;	�� − �S�t;	��2 =
1

N
�x1

2�t;	�� − �x1�t;	��2

+ 	1 −
1

N

��x1�t,	��x2�t,	�� ,

�17�

where we have separated the individual variables as xj�t ;	�
= �xj�t ;	��+�xj�t ;	�. The two-time correlation function is

�S�t;	�S�t + �;	�� =
1

N
�x1�t;	�x1�t + �;	��

+ 	1 −
1

N

�x1�t;	�x2�t + �;	�� .

�18�

In the long t limit, the two-time correlation functions are
periodic in t with period T. Thus, after cycle averaging over
t we write

L��;	� =
1

N
C��;	� + 	N − 1

N

C�12���;	� , �19�

where

C��;	� =
1

T
�

0

T

dt�x1�t;	�x1�t + �;	��* �20�

and

C�12���;	� =
1

T
�

0

T

dt�x1�t;	�x2�t + �;	��*. �21�

The two-time cross correlation function can be split as

�x1�t;	�x2�t + �;	��* = �x1�t;	��*�x2�t + �;	��*

+ ��x1�t;	��x2�t + �;	��*.

Separating C�� ;	� and C�12��� ;	� into their coherent and in-
coherent parts, and taking into account that the coherent part
of the cross correlation function is identical to Ccoh�� ;	�, we
have

1

N
C��;	� + 	N − 1

N

C�12���;	�

=
1

N
Ccoh��;	� +

1

N
Cincoh��;	� + 	N − 1

N

Ccoh��;	�

+ 	N − 1

N

Cincoh

�12� ��;	� �22�

=Ccoh��;	� +
1

N
Cincoh��;	� + 	N − 1

N

Cincoh

�12� ��;	� , �23�

which shows that the coherent part of the collective correla-
tion function is just the coherent part of one of the individual
subsystems, but the incoherent part is affected by the cross
correlation term. We can then conclude that, in the presence
of interactions,

Lcoh��;	� = Ccoh��;	�, Lincoh��;	� =
1

N
Cincoh��;	�

+ 	N − 1

N

Cincoh

�12� ��;	� . �24�

It is clear that, for N
1, the incoherent part of the cross
correlation term will dominate the incoherent part of the glo-
bal correlation function. Lcoh�� ;	� is periodic in � with the
period of the driver, while Lincoh�� ;	� decays to zero for long
�. The signal-to-noise ratio of the collective variable, Rout�	�
can then be evaluated by replacing L̃coh��� and L̃incoh��� by

L̃coh�� ;	� and L̃incoh�� ;	� in Eq. �11�. Notice that in the
presence of coupling, the relation between the signal-to-
noise ratio of the collective variable is not related to that of a
single subunit by a simple relation as in Eq. �12�. Also, the
gain G�	�=Rout�	� /Rin�collec does not have to coincide with
that of a single subsystem.
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III. NUMERICAL RESULTS

In general, nonlinearities preclude analytical solutions of
Eq. �1�. We will then use numerical simulations to obtain
useful information about the stochastic process S�t�. Clearly,
the specific details will depend upon the type of coupling
between the subunits. In this paper we will consider a model
introduced by Desai and Zwanzig �9� formed by a set of
noisy bistable subunits with mean-field coupling; namely,

U�x1, . . . ,xN� = �
i=1

N

V�xi� +
	

2�
i=1

N

xi
2 −

	

2N
	�

i=1

N

xi
2

, �25�

with

V�x� =
x4

4
−

x2

2
. �26�

In the asymptotic limit N→�, Desai and Zwanzig showed
that the statistical properties of the model could be analyzed
in terms of a nonlinear Fokker-Planck equation which allows
the coexistence of several stable probability distributions for
some ranges of noise strengths and 	�1. In the same
asymptotic limit, we analyzed a few years ago the stochastic
resonant behavior of the first moment, �S�t��*, when the sys-
tem is driven by a time dependent sinusoidal force, using a
combination of analytical and numerical procedures �10�. In
particular, for very weak input amplitudes, a linear response
theory analysis showed that a huge amplification in the am-
plitude of the average output �S�t��* with respect to that of
the driving force could be achieved.

In this work we concentrate on situations where �i� the
number of subunits is finite; �ii� the amplitude of the driving
force is not necessarily small and a linear response theory
approximation is, in principle, ruled out. Furthermore, we are
interested not only on the average behavior of the global
variable, but more importantly, on the behavior of the fluc-
tuations. Thus, our goal is to analyze numerically the long
time behavior of the first two cumulant moments of the col-
lective process and its autocorrelation function, for coupled
and uncoupled finite sets of identical units. In the following,
we present our results obtained with two types of external
driving: a sinusoidal force F�t�=A sin��t� and a periodic
rectangular input defined as

F�t� = �− 1�n�t�A , �27�

where n�t�= �2t /T�, �z� being the floor function of z, i.e.,
the greatest integer less than or equal to z. In other words,
F�t�=A�F�t�=−A� if t� �nT /2 , �n+1�T /2� with n even
�odd�.

The numerical method used to solve the Langevin dynam-
ics has been detailed in our previous work �16�. The integra-
tion algorithm is based on one of the schemes put forward by
Greenside and Helfand �17�. The algorithm involves four
stages and it is of order between h3 and h4 in the integration
time step h. This is very advantageous as it allows us to use
relatively large time steps to speed up the simulations. We
also notice that our averages are always averages over many
realizations of the noise ��t� �5000 for the results below�.
Once the numerical approximations to L�� ;	� and Lcoh�� ;	�

have been evaluated, it is a matter of carrying out numerical
quadratures at the desired frequency to calculate the signal-
to-noise ratio and the gain �see Eqs. �11� and �13��.

Let us first consider the case of independent subunits,
	=0. In Fig. 1 we display the time behavior of the first two
cumulant moments �S�t��* �a� and �S2�t��*− �S�t��*

2 �b�, and
the two contributions to the correlation function, Lcoh��� �c�
and Lincoh��� �d�, for a single unit, N=1, and for a set of
N=10 noninteracting identical subunits. The driving force is
sinusoidal with amplitude A=0.3 and frequency �=0.01.
The noise strength is D=0.52. This is a relatively large value
of the noise strength in relation to the noise value at which
the signal-to-noise ratio shows its peak �see the upper panel
in Fig. 2�. As expected from the exact results discussed in
Sec. II, the time behaviors of �S�t��* and Lcoh��� obtained
from the numerics are independent of the system size �the
two curves in panels �a� and �c� of Fig. 1 coincide�. The
expected strong reduction of the fluctuations as the system
size is increased �see Eqs. �6� and �10�� can be clearly ob-
served in the behaviors of the second cumulants and the in-
coherent part of the correlation functions.We have also com-
pared ��x1

2�t��*− �x1�t��*
2� /10 and Cincoh��� /10 �circles in

panels �b� and �d� in Fig. 1� with �S2�t��*− �S�t��*
2 and

Lincoh��� and, as seen in the figures, the agreement is very
good. The dependence of the signal-to-noise ratio and the
gain with D for the same driving parameters are depicted in
Fig. 2. To evaluate the gain, we have used that for the sinu-
soidal driving

Rin
 indiv =
�A2

4D
, �28�

while for the rectangular input

FIG. 1. Temporal behavior of the first two cumulants ��a� and
�b�, respectively�, and the coherent and incoherent parts of the cor-
relation function of the collective variable ��c� and �d�, respectively�
for a system of N uncoupled subsystems. Parameter values are
D=0.52, A=0.3, and �=0.01. Solid lines correspond to N=1 and
dotted lines to N=10. Circles correspond to the values for N=1
divided by 10.
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Rin
 indiv =
4A2

�D
. �29�

The enhancement of Rout, proportional to the system size,
is as expected according to Eq. �12�. Also, the gain is inde-
pendent of the system size �Eq. �13��. Notice that for the case
of subthreshold sinusoidal driving forces considered in Fig.
2, the gain values are always below 1, even though the
signal-to-noise ratio reaches rather high values for N=10.
Later on, we will see that, for coupled systems, gains larger
than 1 can be obtained with subthreshold sinusoidal inputs.

We will now consider finite sets of coupled subunits
�	
0� and analyze the influence of the coupling strength
and the system size on the collective response of the system.
Let us first study the influence of the strength of the coupling
parameter 	, on the system response when the driving pa-
rameters and the number of subsystems are kept fixed. In
Fig. 3 we plot the time behavior of the first two cumulants of
the global variable, �S�t ;	��* and �S2�t ;	��*− �S�t ;	��*

2, as
well as the coherent and incoherent contributions of the cor-
relation function for N=10. The external driving force is
sinusoidal with a frequency �=0.01 and amplitude A=0.3.
The noise strength is kept at D=0.52 as in Fig. 1. The noise
value has been chosen so that it roughly corresponds to
the noise value at which Rout�	� reaches its maximum for
	=1.5 �see the upper panel in Fig. 4�. Two values of the
coupling parameter have been used, 	=0.5 �solid line� and
1.5 �dotted line�. As seen in �a�, the average output is peri-
odic in time with the period of the external driving. Even
though the driving force is sinusoidal, the shape of the aver-
age response shows a certain degree of distortion with re-
spect to a pure monochromatic signal, due to the generation
of higher harmonics. Comparison with the results in Fig. 1�a�
indicates that, at this rather large noise value, coupling be-
tween subunits enhances the average output with respect to

that existing in the absence of coupling. The influence of the
coupling is more dramatic on the behavior of the second
cumulant, as depicted in Fig. 3�b�. Comparison with the re-
sults presented in Fig. 1�b� clearly shows the influence of the
cross terms brought about by the interactions between the
subunits �see Eq. �17��. The second cumulant has a time-
periodic behavior with a period half the period of the driving
force. It reaches its maximum value at those instants of time
when the first moment is near zero. Even though the level of

FIG. 2. Dependence of the signal-to-noise ratio Rout �a� and the
gain �b�, for a system of N independent subsystems. Parameter val-
ues are the same as those in Fig. 1. Open circles correspond to
N=1 and triangles to N=10. The lines have been drawn as a guide
to the eye.

FIG. 3. Temporal behavior of the first two cumulants ��a� and
�b�, respectively�, and the coherent and incoherent parts of the cor-
relation function of the collective variable ��c� and �d�, respectively�
for a system of N=10 identical subsystems with mean-field
coupling. In all panels, the solid lines correspond to 	=0.5 and
the dotted lines to 	=1.5. The rest of the parameter values are
D=0.52, A=0.3, and �=0.01.

FIG. 4. Dependence of the signal-to-noise ratio Rout �panel �a��
and the gain �panel �b��, for a set of N=10 identical subsystems
with mean-field coupling. Open circles correspond to 	=0.5 and
triangles to 	=1.5. The rest of the parameter values are the same as
in Fig. 3.
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the collective fluctuations for coupled sets is higher than
those existing in an uncoupled one, the fluctuations are still
significantly smaller than those arising in the response of a
single system. The time behaviors of the coherent part of the
correlation functions in Fig. 3�c� are consistent with those of
the first moment. As shown in Fig. 3�d� the incoherent parts
of the correlation functions decay relatively fast from rather
small initial values �which are the cycle averages of the cor-
responding second cumulant�.

The signal-to-noise ratio and the gain as functions of D
can readily be evaluated. For a sinusoidal driver with the
same parameter values as in Fig. 3, we have obtained the
results for Rout�	� �a� and G�	� �b� displayed in Fig. 4, for
	=0.5 and 1.5. The signal-to-noise ratio shows the non-
monotonic behavior with D typical of stochastic resonance.
Taking into account the behavior of Rout when 	=0 �see Fig.
2�, one can conclude that coupling shifts the maximum of
Rout�	� to higher values of D as 	 increases. This feature in
the response of coupled sets opens up an interesting possi-
bility which does not exist when dealing with a single unit.
For a given value of the noise strength, the coupling param-
eter could be adjusted accordingly so Rout�	� is maximized.
Another interesting consequence of coupling is that, even
though the peaks of Rout�	� are reduced with respect to those
when 	=0, the gain in coupled sets can be larger than unity.
In principle, nothing precludes gains larger than 1 away from
a linear response regime. But we are not aware of any re-
ported data showing G
1 for a single system driven by a
sinusoidal signal with subthreshold amplitude. Gains larger
than 1 in noisy bistable systems driven by subthreshold in-
puts seem to require multifrequency driving forces �16,18�.
The reason why G�	� can be larger than 1 in coupled sets is
related to the shift of the Rout�	� peak location to higher
values of D as 	 increases. At those high noise values, Rin is
large �see Eq. �28��, but Rout�	=0� is significantly smaller
than Rout�	
0�, and consequently, the ratio defining the gain
�Eq. �13�� can achieve higher values for couple sets than for
noninteracting ones.

In Figs. 5 and 6 we depict the results obtained for the
same quantities and parameter values as in Figs. 3 and 4, but
for a rectangular input with T=2� /�. As we have shown in
our previous work on SR in single units �2,16�, the fluctua-
tions at the output with multifrequency input forces are very
much reduced compared with those present at the output
when the input force is sinusoidal. This strong reduction
gave rise to the possibility of observing gains larger than 1
for subthreshold multifrequency inputs in single noisy
bistable systems. An analogous situation exists for arrays of
coupled systems. The signal-to-noise ratio and the gain of the
collective variable of a finite set of coupled units driven by a
rectangular signal are very much enhanced compared with
those obtained with a sinusoidal driving with the same am-
plitude and period. Notice that now Rout�	� has only a single
peak, whose location shifts to larger values of the noise as 	
increases.

We now turn our analysis to the influence of the number
of subsystems on S�t�. As discussed in Sec. II, for uncoupled
sets, the effect of the system size is to reduce by a factor 1 /N
the size of the fluctuations associated to a single subunit.

When coupling exists, this is no longer the case as the be-
havior of the fluctuations of S�t� is also tied to that of the
cross correlation of two coupled subunits.

We consider �see Fig. 7� the response to a sinusoidal
driving force with amplitude A=0.3 and frequency �=0.01.
The noise strength is D=0.52. We have used 	=1.5 and
N=5,10,20. The first cumulant �a� and Lcoh�� ;	� �c� do not
show a strong dependence on the number of subunits. On the
other hand, the fluctuations decrease drastically as N in-
creases. For large systems, the second cumulant �b� is basi-
cally different from zero only during a relatively small time
interval within each period. The second cumulant behavior
for 	
0 differs from its behavior for uncoupled sets, due to
the existence of new harmonics in the output and the influ-
ence of the cross second cumulant ��x1�t ;	��x2�t+� ;	�� �see
Eq. �17��. Consistently with the behavior of the second cu-

FIG. 5. Same as Fig. 3 for the rectangular input given by Eq.
�27� with �=0.01 and A=0.3.

FIG. 6. Same as Fig. 4 for the rectangular input given by Eq.
�27� with �=0.01 and A=0.3.
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mulant as N increases, the incoherent part of the correlation
function gets smaller as the system increases its size. The
behavior of the signal-to-noise ratio �Fig. 8�a�� and the gain
�Fig. 8�b�� with respect to D for systems with different num-
ber of subsystems �N=5,10,20�, driven by a sinusoidal force
with �=0.01 and amplitude A=0.3 is displayed in Fig. 8.
The coupling parameter 	 is kept fixed at 1.5. The three plots
for the signal-to-noise ratio for the three values of N present
two broad maxima at two different values of the noise
strength. The location of the maxima shifts to higher values
of D as the system size is increased. If the size of the system
could be adjusted, one could do so accordingly with the ex-

isting noise level to get a maximized output. Gains larger
than unity can also be obtained as N increases. The range of
D values for which G
1 depends on N. For rectangular
driving forces the different quantities show the same quali-
tative behavior for the different sizes as in the case of sinu-
soidal inputs �see Figs. 9 and 10�, but SR effects with mul-
tifrequency inputs are pretty much enhanced with respect to
the ones obtained with sinusoidal driving terms.

IV. CONCLUSIONS

In this work we have explored stochastic resonance ef-
fects in finite sets of coupled, identical, noisy units driven by
time-periodic forces. The whole set is characterized by a
collective stochastic variable, which we consider to be the
arithmetic mean of the random variable describing each sub-

FIG. 7. Time behavior of the first two cumulants �a� and �b� and
of the coherent and incoherent parts of the correlation function �c�
and �d� of the variable S�t� for sets of different sizes. The driving
force is sinusoidal with A=0.3 and �=0.01. Solid lines correspond
to N=5, dotted lines to N=10, and dashed lines to N=20. The
coupling is 	=1.5.

FIG. 8. Dependence on D of the signal-to-noise ratio and the
gain for the same situations as in the previous figure. Circles cor-
respond to N=5, triangles to N=10, and squares to N=20. Solid
lines have been drawn as a guide to the eye.

FIG. 9. Same as Fig. 7 for the rectangular input given by Eq.
�27� with �=0.01 and A=0.3.

FIG. 10. Same as Fig. 8 for the rectangular input given by Eq.
�27� with �=0.01 and A=0.3.
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unit. We have focused on the first two cumulant moments
and the one-time correlation function of the global variable.
The lack of analytical solutions for the set of stochastic dif-
ferential equations describing the dynamical evolution leads
us to use numerical procedures. Averaging over many real-
izations of the noise, we estimate the time evolution of the
cumulants and the correlation function for sets of varying
sizes and for different values of their coupling terms. We find
that the collective fluctuations are pretty much reduced with
respect to those present in single isolated units. The amount
of reduction depends on the system size and the coupling
strength.

Our results indicate that the collective variable shows sto-
chastic resonant effects regardless of the strength of the cou-
pling or the size of the system. Furthermore, the peak values
of the several SR quantifiers of the collective variable are
enhanced with respect to those obtained for each indepen-
dent subunit. The main reason for this enhancement lies in
the tremendous reduction and control of the output fluctua-

tions brought up by the interaction among the different sub-
units. As we have explicitly demonstrated, coupling together
a modest number of individual systems, opens the possibility
of obtaining a collective output which is stronger and a lot
less noisy than the output of each of them taken individually.

If the signal-to-noise and the gain are taken as indications
of the “quality” of the output signal with respect to the input,
we can conclude that increasing the system size and increas-
ing the value of the coupling term seems to be a reliable way
to get an enhancement of the quality of the output signal with
respect to the output of either a single unit or sets of un-
coupled subunits.
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